Pytorch Early Stopping
Basic Early Stopping Implementation in PyTorch
import torch
class EarlyStopping:
def __init__(self, patience=5, min_delta=0.001):
"""
Args:
patience (int): How many epochs to wait after last time validation loss improved.
min_delta (float): Minimum change in the monitored quantity to qualify as an improvement.
"""
self.patience = patience
self.min_delta = min_delta
self.best_loss = float('inf')
self.counter = 0
def __call__(self, val_loss):
if val_loss < self.best_loss - self.min_delta:
self.best_loss = val_loss
self.counter = 0 # Reset patience counter
else:
self.counter += 1 # Increase counter if no improvement
return self.counter >= self.patience # Return True if early stopping condition met
# Example Usage in a Training Loop
early_stopping = EarlyStopping(patience=5, min_delta=0.001)
for epoch in range(100): # Example max epochs
train_loss = train_model() # Your training function
val_loss = validate_model() # Your validation function
print(f"Epoch {epoch+1}, Train Loss: {train_loss}, Val Loss: {val_loss}")
if early_stopping(val_loss):
print("Early stopping triggered!")
breakEarly Stopping with Model Checkpointing & Best Weights Restoration
Last updated