Loading large data
Use datatable library
import datatable as dt
dt.fread("file").to_pandas()Use DuckDB library
duckdb.sql(
"""
select
days_till_primary_close,
days_till_final_close,
loans_outstanding_balance,
utilization,
primary_close_flag, final_close_flag
from df
where primary_close_flag = 1 and final_close_flag = 0 limit 100
"""
).pl().sample(10)where df is the dataframe and .pl() converts the dataframe into Polars dataframe
Convert float64 to float32
df = df.astype({c: np.float32 for c in df.select_dtypes(include='float64').columns})Load pickle file
Last updated