df.na.drop(how="all") #if all columns have null values
df.na.drop(how="any") #if any one columns have null value
df.na.drop(how="any", thresh=2) #if atleast there are 2 null values
# spark inputs
spark_data = [Row(label=0, cate1='abc'),
Row(label=1, cate1='abc'),
Row(label=0, cate1='def'),
Row(label=0, cate1='def'),
Row(label=1, cate1='ghi')]
df = spark.createDataFrame(spark_data)
df.show()
>>>
+-----+-----+
|cate1|label|
+-----+-----+
| abc| 0|
| abc| 1|
| def| 0|
| def| 0|
| ghi| 1|
+-----+-----+
# function
def target_mean_encoding(df, col, target):
"""
:param df: pyspark.sql.dataframe
dataframe to apply target mean encoding
:param col: str list
list of columns to apply target encoding
:param target: str
target column
:return:
dataframe with target encoded columns
"""
target_encoded_columns_list = []
for c in col:
means = df.groupby(F.col(c)).agg(F.mean(target).alias(f"{c}_mean_encoding"))
dict_ = means.toPandas().to_dict()
target_encoded_columns = [F.when(F.col(c) == v, encoder)
for v, encoder in zip(dict_[c].values(),
dict_[f"{c}_mean_encoding"].values())]
target_encoded_columns_list.append(F.coalesce(*target_encoded_columns).alias(f"{c}_mean_encoding"))
return df.select(target, *target_encoded_columns_list)
# function apply on spark inputs
df_target_encoded = target_mean_encoding(df, col=['cate1'], target='label')
df_target_encoded.show()
>>>
+-----+-------------------+
|label|cate1_mean_encoding|
+-----+-------------------+
| 0| 0.5|
| 1| 0.5|
| 0| 0.0|
| 0| 0.0|
| 1| 1.0|
+-----+-------------------+
# if you want to keep the same column name after target mean encoder
df_target_encoded.withColumnRenamed('cate1_mean_encoding', 'cate1')
df_target_encoded.show()
>>>
+-----+-----+
|label|cate1|
+-----+-----+
| 0| 0.5|
| 1| 0.5|
| 0| 0.0|
| 0| 0.0|
| 1| 1.0|
+-----+-----+